
VMM-Independent Graphics Acceleration ∗

H. Andrés Lagar-Cavilla
University of Toronto

andreslc@cs.toronto.edu

Niraj Tolia
Carnegie Mellon University

ntolia@cmu.edu

M. Satyanarayanan
Carnegie Mellon University

satya@cs.cmu.edu

Eyal de Lara
University of Toronto
delara@cs.toronto.edu

Abstract
This paper describes VMGL, a cross-platform OpenGL virtual-
ization solution that is both VMM and GPU independent. VMGL
allows applications executing within virtual machines (VMs) to
leverage hardware rendering acceleration, thus solving a prob-
lem that has limited virtualization of a growing class of graphics-
intensive applications. VMGL also provides applications running
within VMs with suspend and resume capabilities across GPUs
from different vendors. Our experimental results from a number of
graphics-intensive applications show that VMGL provides excel-
lent rendering performance, coming within 14% or better of native
graphics hardware acceleration. Further, VMGL’s performance is
two orders of magnitude better than that of software rendering,
the commonly available alternative today for graphics-intensive
applications running in virtualized environments. Our results con-
firm VMGL’s portability across VMware Workstation and Xen (on
VT and non-VT hardware), and across Linux (with and without
paravirtualization), FreeBSD, and Solaris. Finally, the resource de-
mands of VMGL align well with the emerging trend of multi-core
processors.

Categories and Subject Descriptors I.3.4 [Computer Graphics]:
Graphics Utilities,Virtual Device Interfaces; C.5.m [Computer
Systems Implementation]: Miscellaneous

General Terms Design, Performance, Experimentation

Keywords Virtualization, Graphics, Hardware Acceleration, Porta-
bility, VMM-independence

∗ This research was supported by the National Science and Engineering
Research Council (NSERC) of Canada under grant number 261545-3 and a
Canada Graduate Scholarship, by the Canadian Foundation for Innovation
(CFI) and the Ontario Innovation Trust (OIT) under grant number 7739, by
the National Science Foundation (NSF) under grant number CNS-0509004,
and by Google under the Summer of Code 2006 program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’07, June 13–15, 2007, San Diego, California, USA.
Copyright © 2007 ACM 978-1-59593-630-1/07/0006. . . $5.00

1. Introduction
Virtual machine monitor (VMM) technology has been put to many
innovative uses, including mobile computing [16, 28, 40], system
management [17, 39], intrusion detection [18], and grid comput-
ing [20]. However, the difficulty of virtualizing graphical process-
ing units (GPUs) has so far limited the use of virtual machines
(VMs) for running interactive applications. The performance ac-
celeration provided by GPUs is critical to high-quality visualization
in many applications, such as computer games, movie production
software, computer-aided design tools for engineering and architec-
ture, computer-aided medical diagnosis, and scientific applications
such as protein modeling for drug synthesis. For this class of appli-
cations, software rendering is the prevalent option for virtualized
execution, and it is unacceptably slow.

Virtualizing GPUs is difficult for a number of reasons. First, the
hardware interface to a GPU is proprietary, and many technical de-
tails are closely held as trade secrets. Hence, it is often difficult to
obtain the technical specifications necessary to virtualize a GPU.
Second, because the hardware interface is not public, GPU ven-
dors make significant changes in the interface as their product lines
evolve. Trying to virtualize across such a wide range of interfaces
can result in a weak lowest common denominator. Third, the soft-
ware needed to integrate a GPU into an operating system is typi-
cally included with the hardware as a closed-source device driver.
In a virtualized environment, the driver is unusable for other guest
operating systems. For reasons mentioned earlier, the technical de-
tails necessary to create a new driver for other guests are typically
not available. In summary, virtualization of a hardware component
presumes the existence of a standard interface such as the x86 in-
struction set, or the IDE and SCSI interfaces to disks; GPUs lack
such a standard.

This paper proposes a solution that is strongly influenced by
how applications actually use GPUs. Many of the virtualization
challenges discussed in the previous paragraph would also com-
plicate the authoring of applications. For example, the absence of
a stable GPU interface would require frequent application changes
to track hardware. The large diversity of technical specifications
across GPUs and the difficulty of obtaining them publicly would
severely restrict the market size of a specific application implemen-
tation. The graphics community avoids these problems through the
use of higher-level APIs that abstract away the specifics of GPUs.
Practically all applications that use GPUs today are written to one
or both of two major APIs: OpenGL [5] and Direct3D [33]. Of these
two, OpenGL is the only cross-platform API supported on all ma-
jor operating systems. For each supported operating system, a GPU
vendor distributes a closed-source driver and OpenGL library. The

job of tracking frequent interface changes to GPUs is thus delegated
to the GPU vendors, who are best positioned to perform this task.
Although OpenGL is a software interface, it has become a de facto
GPU interface. We therefore make it the virtualization interface.

We describe VMGL, a virtualized OpenGL implementation that
offers hardware accelerated rendering capabilities to applications
running inside a VM. VMGL runs the vendor-supplied GPU driver
and OpenGL library in the VMM host: the administrative VM for
a hypervisor like Xen, or the hosting OS for a VMM like VMware
Workstation. The host runs a vendor-supported operating system
and has direct access to the GPU. Using a GL network transport,
VMGL exports the OpenGL library in the host to applications run-
ning in other VMs. When those applications issue OpenGL com-
mands, the commands are transported to the GPU-enabled host and
executed there. VMGL thus preserves complete application trans-
parency; no source code modification or binary rewriting is nec-
essary. VMGL also supports suspend and resume of VMs running
graphics accelerated applications, thus supporting several novel ap-
plications of VM technology [16, 28, 39]. Further, VMGL allows
suspended VMs to be migrated to hosts with different underlying
GPU hardware. VMGL is not critically dependent on a specific
VMM or guest operating system, and is easily ported across them.

We evaluate VMGL for diverse VMMs and guests. The VMMs
include Xen on VT and non-VT hardware, and VMware Work-
station. The guests include Linux with and without paravirtuali-
zation, FreeBSD and Solaris. In experiments with four graphics-
intensive applications, including one that is closed source, the ob-
served graphics performance of VMGL comes within 14% or bet-
ter of native performance, and outperforms software rendering by
two orders of magnitude. Although this approach incurs the per-
formance overhead of cross-VM communication, our experimental
evaluation demonstrates that this overhead is modest. Moreover,
our results also show that multi-core hardware, which is increas-
ingly common, can help in reducing the performance overhead.

The rest of this paper describes the design, implementation
and experimental validation of our VMGL prototype for OpenGL
virtualization on X11-based systems. We begin in Section 2 with
an overview of GPUs and OpenGL. Section 3 then describes the
detailed design and implementation of VMGL. Section 4 presents
the experimental validation of VMGL. Section 5 discusses related
work and Section 6 concludes the paper and presents our plans for
future work.

2. Background
In this section, we provide an introduction to graphics hardware ac-
celeration and OpenGL, the most commonly used cross-platform
3D API. We also describe how X11-based applications leverage
hardware acceleration capabilities. Readers familiar with these top-
ics can skip ahead to Section 3.

2.1 Hardware Acceleration
Almost all modern computers today include a Graphics Process-
ing Unit (GPU), a dedicated processor used for graphics rendering.
GPUs have become increasingly popular as general purpose CPUs
have been unable to keep up with the demands of the mathemati-
cally intensive algorithms used for transforming on-screen 3D ob-
jects, or applying visual effects such as shading, textures, and light-
ing. GPUs are composed of a large number of graphics pipelines
(16–112 for modern GPUs) operating in parallel. For floating point
operations, GPUs can deliver an order of magnitude better perfor-
mance that modern x86 CPUs [22].

Modern GPUs range from dedicated graphics cards to integrated
chipsets. As individual hardware implementations might provide
different functionality, 3D graphics APIs have arisen to isolate
the programmer from the hardware. The most popular APIs are

OpenGL, an open and cross-platform specification, and Direct3D,
a closed specification from Microsoft specific to their Windows
platform. We describe OpenGL below in more detail.

2.2 OpenGL Primer
OpenGL is a standard specification that defines a platform-indepen-
dent API for 3D graphics. The OpenGL API supports application
portability by isolating developers from having to program for
different hardware implementations.

Vendors implement the OpenGL API in the form of a dynam-
ically loadable library that can exploit the acceleration features of
their graphics hardware. All OpenGL implementations must pro-
vide the full functionality specified by the standard. If hardware
support is unavailable for certain functions, it must be implemented
in software. This isolates the programmer from having to determine
available features at runtime. However, the OpenGL specification
does allow for vendor-specific extensions; applications can only de-
termine the availability of these extensions at runtime.

The OpenGL calls issued by an application modify the OpenGL
state machine, a graphics pipeline that converts drawing primitives
such as points, lines, and polygons into pixels. An OpenGL con-
text encapsulates the current state of the OpenGL state machine.
While an application may have multiple OpenGL contexts, only
one context may be rendered on a window at a given time. OpenGL
is strictly a rendering API and does not contain support for user
input or windowing commands. To allow OpenGL contexts to in-
teract with the window manager, applications use glue layers such
as GLX for X11-based systems, WGL for Microsoft Windows, and
AGL for the Macintosh.

Today, OpenGL is the only pervasive cross-platform API for
3D applications. The competing proprietary API, Microsoft’s Di-
rect3D, only supports the Windows operating systems. OpenGL
implementations are available for Linux, Windows, Unix-based
systems, and even embedded systems. Bindings exist for a large
number of programming languages including C, C++, C#, Java,
Perl, and Python.

2.3 X11 Hardware Acceleration
GLX, the OpenGL extension to the X Window System, provides
an API that allows X11-based applications to send OpenGL com-
mands to the X server. Depending on hardware availability, these
commands will either be sent to a hardware-accelerated GPU or
rendered in software using the Mesa OpenGL implementation [36].
As GLX serializes OpenGL commands over the X11 wire protocol,
it is able to support both local and remote clients. Remote clients
can only perform non-accelerated rendering.

Using GLX can lead to significant overhead as all data has to
be routed through the X server. In response, the Direct Rendering
Infrastructure (DRI) was created to allow for safe direct access to
the GPU from an application’s address space, while still relying
on Mesa for a software fallback. The Direct Rendering Manager
(DRM), a kernel module, controls the GPU hardware resources
and mediates concurrent access by different applications (including
the X server). While the DRI provides a direct path for OpenGL
commands, GLX must still be used for interactions with the X
window server.

3. VMGL
VMGL offers hardware accelerated rendering capabilities to ap-
plications running inside a VM. VMGL virtualizes the OpenGL
API v1.5, providing access to most modern features exposed by 3D
graphics hardware, including vertex and pixel shaders. VMGL also
provides VM suspend and resume capabilities. The current VMGL
implementation supports Xen and VMware VMMs, ATI, Nvidia,

and Intel GPUs, and X11-based guest operating systems like Linux,
FreeBSD, and OpenSolaris. VMGL is implemented in userspace to
maintain VMM and guest OS agnosticism, and its design is orga-
nized around two main architectural features:

• Virtualizing the OpenGL API removes any need for applica-
tion modifications or relinking, guarantees portability to differ-
ent guest operating systems, and guarantees compatibility with
graphics hardware from different manufacturers.

• Use of a Network Transport guarantees applicability across
VMMs and even for different types of VMs supported by the
same VMM.

VMGL is open-source software publicly available on the au-
thor’s website [29]. In the rest of this paper, the term host refers
to the administrative VM in Xen, or the underlying OS for hosted
VMMs like VMware Workstation. The term guest refers to a VM
or domain.

3.1 VMGL Architecture
Figure 1 shows the VMGL architecture, which consists of three
user-space modules: the VMGL library, the VMGL stub, and the
VMGL X server extension. The figure also shows an application
running on the guest VM and a viewer which runs on the host and
handles user input and the guest’s visual output.

Applications inside guests use the VMGL library as a replace-
ment for standard or vendor-specific OpenGL implementations.
Upon application startup, the VMGL library creates a VMGL stub
on the host to act as a sink for OpenGL commands. The VMGL stub
links against the OpenGL library available on the host to obtain di-
rect rendering capabilities on behalf of the virtualized application.
When the application inside the guest issues GL commands, the
VMGL library forwards those commands to the VMGL stub using
a network transport over a loopback connection. Each application
uses a different VMGL stub, and each stub executes as a separate
process in the host, thus leveraging the address space protection
guarantees offered by the vendor OpenGL implementation.

Figure 1 illustrates the use of viewer software, typically based
on VNC [38], that displays the 2D output generated by a guest, and
captures user input and relays it to the guest. The guest 2D output
is generated by an X server drawing to a virtual 2D framebuffer.
In the absence of a virtual framebuffer, 2D output is generated
by a VNC X server. We modified a VNC viewer to interact with
VMGL stubs; the VNC viewer modifications are minimal as we
offload most of the functionality onto the stubs. This allowed us
to easily add support for the alternative viewers used by Xen and
other VMMs like QEMU [12].

To compose the viewer 2D output and the VMGL stub’s 3D
GL output, we augment the guest’s X server with an extension.
The VMGL library uses this extension to register windows bound
to OpenGL contexts. The extension monitors changes to the size,
position and visibility of OpenGL-enabled windows, and forwards
those changes to the VMGL stub. The stub applies this information
on its GL graphical output by clipping it to remove sectors that are
not currently visible in the guest’s desktop, resizing it, and finally
superimposing it on the viewer window at the appropriate relative
coordinates. The VMGL X extension is a loadable module that
can be added to an existing X server configuration. The extension
operates at the common device independent layer shared by all
variants of X servers, ensuring support for the X11 and VNC
servers used inside guests.

The rest of this section first describes WireGL, the OpenGL net-
work transport used by VMGL. We then describe VMGL’s suspend
and resume implementation, and discuss driver changes necessary
to obtain direct rendering capabilities in a Xen configuration. Fi-
nally, we discuss limitations of the current implementation.

GL Commands

Windowing Commands

Mouse and Keyboard Input

VMGL
Extension

Direct
GPU

Access

2D Output

Figure 1: VMGL Architecture

3.2 OpenGL Transport
The standard OpenGL transport for remote rendering is GLX, pre-
viously described in Section 2.3. When used over network connec-
tions, GLX has two important disadvantages. First, it cannot pro-
vide a direct rendering path from the application to the graphics
card. This is solved in VMGL by interposing a GL stub that chan-
nels GL commands into a direct rendering context. Second, GLX
involves costly network round-trips for each and every OpenGL
command being invoked. VMGL avoids this cost by leveraging the
WireGL protocol [15, 26]. WireGL optimizes the forwarding of
OpenGL commands by only transmitting changes to screen-visible
state, and by aggregating multiple OpenGL commands in a single
network transmission.

WireGL applies the changes to OpenGL state requested by the
application to a local cache. Dirty cache contents are flushed lazily
as needed. This enables smart discarding or postponing of ineffec-
tual state changing commands. For example, if glTexSubImage is
used to modify a texture that is currently not visible, no network
packets will be sent until the modified area becomes visible.

WireGL further optimizes network utilization by reordering and
buffering commands until a commit point arrives. Geometry com-
mands are buffered in queues. Whenever possible, commands are
merged in these queues. For example, consecutive glRotate and
glTranslate calls are collapsed into a single matrix modification
command. When the application issues state changing or flushing
commands (like glFlush or glXSwapBuffers), the buffered block
of geometry modifications is sent, along with outstanding state
changes associated to that geometry.

3.3 Suspend and Resume Functionality
VMGL provides support for VM suspend and resume, enabling
user sessions to be interrupted or moved between computers [16,
28, 39]. Upon VM resume, VMGL presents the same graphic state
that the user observed before suspending while retaining hardware
acceleration capabilities.

VMGL uses a shadow driver [43] approach to support guest
suspend and resume. While the guest is running, VMGL snoops on
the GL commands it forwards to keep track of the entire OpenGL
state of an application. Upon resume, VMGL instantiates a new
stub on the host, and the stub is initialized by synchronizing it
with the application OpenGL state stored by VMGL. While the
upper bound on the size of the OpenGL state kept by VMGL is
in principle determined by the GPU RAM size, our experiments in
section 4.6 demonstrate it is much smaller in practice.

VMGL keeps state for all the OpenGL contexts managed by the
application, and all the windows currently bound to those contexts.
For each window we track the visual properties and the bindings to
the VMGL X extension. For each context, we store state belonging
to three categories:

• Global Context State: Including the current matrix stack, clip
planes, light sources, fog settings, visual properties, etc.

• Texture State: Including pixel data and parameters such as
border color or wrap coordinates. This information is kept for
each texture associated to a context.

• Display Lists: A display list contains a series of OpenGL calls
that are stored in GPU memory in a compact format, to optimize
their execution as a single atomic operation at later times. For
each display list associated to a context we keep a verbatim
“unrolling” of its sequence of OpenGL calls.

Like the rest of VMGL, the code implementing OpenGL state
restore resides in userspace, thus retaining OS and VMM indepen-
dence. Furthermore, OpenGL state is independent of its representa-
tion in GPU memory by a particular vendor. Therefore, VMGL can
suspend and resume applications across physical hosts equipped
with GPUs from different vendors. The only prerequisite is for the
graphics card of the target computer to provide a superset of the
extensions supported by the card of the source machine, or that
vendor-specific OpenGL extensions are altogether disabled.

3.4 Porting GPU Drivers For Xen
VMMs such as VMware Workstation run an unmodified OS as
the host, thus enabling the VMGL stubs to readily take advantage
of hardware-specific drivers for direct rendering. However, this is
not always the case for Xen. Its administrative VM, also known
as domain0, is itself a VM running a paravirtualized kernel, and
incompatibilities with closed-source drivers arise.

Xen’s architecture prevents virtual machines from modifying
the memory page tables through direct MMU manipulation. Para-
virtualized kernels in Xen need to invoke the mmu update hy-
percall to have Xen perform a batch of page table modifications
on its behalf. Before manipulating the hardware MMU, Xen will
sanity-check the requested changes to prevent unauthorized access
to the memory of another virtual machine. Transferring MMU-
manipulation responsibilities to the hypervisor has introduced an-
other level of indirection in memory addressing: physical frame
numbers in a domain kernel are mapped by Xen into machine frame
numbers, the actual memory frame numbers handled by the MMU.

To enable direct rendering functionality, OpenGL implementa-
tions need to communicate with the graphics card. This is typically
achieved by memory mapping a character device, which results in
the kernel remapping GPU DMA areas into the GL library’s ad-
dress space. In the absence of IOMMU hardware support for vir-
tualized DMA addressing [13], Xen needs to interpose on these
operations, translate them to machine frame numbers, and sanitize
them. Drivers included in the Linux kernel distribution and using
the Direct Rendering Manager described in Section 2 (e.g. Intel’s),
use functions that Xen paravirtualizes to provide the proper DMA
addressing. Unfortunately, this is not the case with the proprietary
closed-source drivers of Nvidia and ATI cards.

Luckily, these drivers are wrapped by an open-source compo-
nent that is recompiled to match the specifics of the current kernel.
As long as all DMA mapping functions are contained in the open-
source component, the proprietary driver can be adjusted to run in
domain0. We have ported the fglrx driver version 8.29.6 for an ATI
Radeon X600 PCI-Express card. By changing the DMA mapping
macro to use a paravirtualization-aware function, we were able to
use the driver in domain0. Similar modifications to the proprietary
Nvidia driver version 1.0-8756 also provide direct rendering func-
tionality for domain0 [4].

3.5 VMGL Limitations
VMGL currently supports 59 OpenGL v1.5 extensions, including
vertex programs, fragment programs, and 13 vendor-specific exten-

Application Release Date
Quake 3 Dec, 1999

Unreal Tournament 2004 Mar, 2004
Wolfenstein: Enemy Territory May, 2003

Mplayer Jun, 2006

Table 1: Application Benchmarks

sions. We are constantly working to extend VMGL support to more
GL extensions. For instance, the Unreal Tournament 2004 bench-
mark used in the next section demanded the implementation of a
number of extensions including GL EXT bgra. Vendor-specific ex-
tensions could represent a source of incompatibility if a VMGL-
enabled guest is resumed on a new physical host with a differ-
ent GPU from the one available where it was last suspended. If
the GPU at the resume site does not support some of the vendor-
specific extensions in use by an application, we will have to tem-
porarily map their functionality to supported variants, possibly suf-
fering a performance hit. An alternative solution is to altogether dis-
able vendor-specific extensions, at the expense of sacrificing func-
tionality in some cases.

VMGL currently does not support Windows or MacOS guests.
We have not yet developed the necessary hooks into the windowing
systems to provide functionality similar to that of our X server
extension, although we do not anticipate any major obstacles in
this area. Finally, we conjecture that the Direct3D API used by
some Windows applications can be supported through Direct3D to
OpenGL translation layers, such as WineD3D [2].

4. Evaluation
Our evaluation of VMGL addresses the following questions:

Performance How does VMGL compare to software rendering
alternatives, such as the Mesa OpenGL library [36]? How close
does it come to providing the performance observed with unvir-
tualized graphics acceleration?

Portability Can VMGL be used with different VMMs? Can
VMGL be used with different VM types supported by the same
VMM? Can VMGL be used with different guest operating sys-
tems?

Suspend and Resume What is the latency for resuming a sus-
pended OpenGL application? What is the size of an applica-
tion’s OpenGL suspended state? Can we migrate suspended
OpenGL applications across GPUs from different vendors?

Sensitivity to Resolution What is the effect of rendering resolu-
tion on VMGL performance?

Sensitivity to Multiple Processors How sensitive is VMGL to
processing power? Can it take advantage of multi-core CPUs?

Scalability How well does VMGL scale to support multiple VMs
performing 3D drawing concurrently? A proposed use for VMs
is the deployment of virtual appliances [47]. It is expected that
users will run multiple virtual appliances in a single physical
platform, with perhaps several appliances doing 3D rendering
simultaneously.

4.1 Benchmarks
Table 1 summarizes the four benchmarks we use in the evaluation
of VMGL. We focus our evaluation on computer games and enter-
tainment as these classes of applications have effectively become
the driving force in the development of consumer graphics applica-
tions and hardware [37]:

(a) Quake 3 Arena (b) Enemy Territory

(c) Unreal Tournament 2004 (d) Mplayer

Figure 2: Benchmark screenshots

• Quake 3: Quake III Arena [27] (Figure 2 (a)), was first released
in December, 1999. Quake 3 employs an extensive array of
OpenGL drawing techniques [49], including shader scripts; vol-
umetric textures, fog and lighting; vertex animation; Gouraud
shading; spline-based curved-surfaces, and others. This set of
features has enabled Quake 3, despite its relative age, to remain
a popular application for benchmarking 3D performance [34,
44]. Quake 3 was open-sourced in 2005.

• Enemy: Wolfenstein Enemy Territory [41] (Figure 2 (b)) was
released in May of 2003. The game is a third-generation suc-
cessor to the Quake 3 engine, including enhancements such
as skeletal animation and substantially increased texture and
scenic detail. Enemy’s logic was open-sourced in 2004.

• Unreal: Unreal Tournament 2004 [19] (Figure 2 (c)) has a mod-
ern graphics engine [45] that exploits a variety of features such
as vertex lighting, projective texturing, sprite or mesh particle
systems, distance fog, texture animation and modulation, por-
tal effects, and vertex or static meshes. Like Quake 3, Unreal is
also heavily favored by the industry as a de facto benchmark for
3D graphics performance [9, 44]. Unlike Quake 3 and Enemy,
this application is closed source.

• Mplayer: Mplayer [3] (Figure 2 (d)) is a popular open source
media player available for all major operating systems. It sup-
ports a number of different video codecs, and a number of out-
put drivers, including texture-driven OpenGL output.

For the first three benchmarks, we replayed publicly available
demos for 68 seconds (Quake 3 [27]), 145 seconds (Enemy [8]),
and 121 seconds (Unreal [6]). For the Mplayer benchmark we
replayed the first 121 seconds of a video clip encoded at two
different resolutions.

4.2 Experimental Setup
We tested VMGL with two virtual machine monitors, Xen 3.0.3 [10]
and VMware Workstation 5.5.3 [7]. All experiments were run on
a 2.4 GHz Intel Core2 machine with two single-threaded cores,
VT hardware virtualization extensions, and 2 GB of RAM. For
most experiments, we employed a Radeon X600 PCI-Express ATI
graphics card; for a set of suspend and resume experiments we used
an Intel 945G PCI-Express Graphics card. The machine ran the Fe-
dora Core 5 Linux distribution with the 2.6.16.29 kernel in 32 bit
mode, and X.Org version 7.0 with the fglrx proprietary ATI driver
version 8.29.6, or the DRI driver based on Mesa version 6.4.2 for
the Intel Card. All virtual machines were configured with the same
kernel (modulo para-virtualization extensions for Xen), same dis-
tribution, 512 MB of RAM, and no swap. We ran each benchmark
in three different configurations:

• Native: an unvirtualized environment with direct access to
hardware and native OpenGL drivers. VMGL was not used.
This represents the upper bound on achievable performance for
our experimental setup.

 0

 20

 40

 60

 80

 100

MplayerUnrealEnemyQuake 3

A
v
e

ra
g

e
 F

ra
m

e
s
 P

e
r

S
e

c
o

n
d

Application

0.9 0.4 N/A
3.98

Xen + Mesa
Xen + VMGL

Native

Figure 3: VMGL performance – Average FPS, high resolution.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Instantaneous Frames Per Second (FPS)

Unreal

Enemy

Quake 3

VMGL
Native

Figure 4: VMGL performance – FPS variability, high resolution.

• Guest + Mesa Software Rendering: a virtualized guest using
software rendering provided by the Mesa OpenGL library. No
hardware rendering facilities were used. This is the commonly
available configuration for current users of 3D applications in
virtualized environments. The Unreal benchmark refuses to run
in the absence of hardware acceleration.

• Guest + VMGL: a virtualized guest using VMGL to provide
3D hardware acceleration. This configuration is depicted by
Figure 1.

In each of these configurations, all benchmarks were executed
at two different resolutions:

• High Resolution: The resolution was set to 1280x1024 except
for Mplayer, which had a resolution of 1280x720 (the closest
NTSC aspect ratio).

• Low Resolution: The resolution was set to 640x480 except for
Mplayer, which had a resolution of 640x352 (the closest NTSC
aspect ratio).

We quantify graphics rendering performance in terms of frame-
rate or Frames per Second (FPS), a standard metric used for the
evaluation of 3D graphics [9, 34, 44]. We also measure VMGL’s
resource utilization in terms of CPU load and network usage. All

 0

 20

 40

 60

 80

 100

MplayerUnrealEnemyQuake 3

A
v
e

ra
g

e
 F

ra
m

e
s
 P

e
r

S
e

c
o

n
d

Application

Xen HVM
Xen PV-on-HVM

VMware Workstation
Xen Paravirtual

Figure 5: VMM portability – High resolution.

 0

 20

 40

 60

 80

 100

LinuxSolarisFreeBSD

A
v
e

ra
g

e
 F

ra
m

e
s
 p

e
r

S
e

c
o

n
d

s

Operating System

Mesa
VMGL

Figure 6: Guest OS portability – Quake 3, VMware Workstation guests.

data points reported throughout the rest of this section are the aver-
age of five runs. All bar charts have standard deviation error bars.

4.3 Performance
Figure 3 shows the results from running the benchmarks un-
der three configurations, native, Xen paravirtualized guest with
VMGL, and Xen paravirtualized guest with Mesa software render-
ing. All benchmarks in the figure are run in high resolution mode.

First, we observe that VMGL’s performance is two orders of
magnitude better than software rendering. The number of FPS de-
livered by Mesa ranges from 0.4 to 4. From the user’s perspective,
this low framerate renders the applications unusable.

Next, we observe that VMGL’s performance approximates that
of the native configuration, with the performance drop ranging
from 14% for the Enemy benchmark to virtually no loss for the
Mplayer and Unreal benchmarks. In our subjective experience, the
user experience delivered by VMGL is indistinguishable from that
of the native configuration for all of the benchmarks.

Figure 3 reports a global average metric. To further understand
VMGL’s performance we need to compare its variations in frame-
rate and peak FPS values against those observed under native exe-
cution. Crisp interaction with highly detailed graphics applications
not only demands a high framerate, but also a uniform experience
without jitter [21]. Figure 4 plots a cumulative distribution func-

 0

 10

 20

 30

 40

 50

 60

 70

 80

MplayerUnrealEnemyQuake 3

O
p

e
n

G
L

 S
u

s
p

e
n

d
e

d
 S

ta
te

 (
M

B
s
)

Application

Low Res
High Res

 0

 0.5

 1

 1.5

 2

 2.5

MplayerUnrealEnemyQuake 3

R
e

s
u

m
e

 T
im

e
 (

s
e

c
s
)

Application

Low Res
High Res

(a) Size of suspended OpenGL state (b) Resume time

Figure 7: Suspend and resume – Xen Paravirtual guest.

tion for the instantaneous FPS across all five trials on each bench-
mark. Plots to the right indicate better performance than plots to the
left; the more vertical a plot is, the smaller variability in framerate.
We exclude Mesa results given their very low quality; we also ex-
clude the Mplayer benchmark as it presents a constant framerate of
25 FPS across the remaining configurations. VMGL results closely
follow the behavior of their native execution counterparts. The vari-
ability in frame rates is consistent with that observed under native
execution. Differences in the framerate distribution and peak FPS
values with respect to native execution are minimal.

4.4 VMM Portability
Figure 5 shows VMGL’s performance for one VMware Worksta-
tion and three Xen configurations: Xen HVM leverages Intel’s VT
extensions to run an unmodified Linux kernel as a guest, and em-
ulates network I/O using code derived from the QEMU emula-
tor [12]; Xen PV-on-HVM is similar to Xen HVM, but a loadable
kernel module provides the guest with Xen-aware paravirtualized
network functionality; VMware Workstation runs an unmodified
Linux kernel as the guest OS and uses VMware Tools for propri-
etary network virtualization; Finally, Xen Paravirtual is the same
Xen paravirtualized guest configuration as the Xen + VMGL bars
of Figure 3.

As expected, Figure 5 shows that the quality of network virtu-
alization is a fundamental factor affecting VMGL’s performance.
Without paravirtualized extensions, a Xen HVM presents very low
FPS ratings. The PV-on-HVM configuration provides almost iden-
tical performance to that of Xen paravirtualized guests. VMware
Workstation’s similar use of virtualization-aware drivers on an oth-
erwise unmodified OS also yields an order of magnitude better per-
formance than a pure Xen HVM. We expect VMGL performance
under a VMware hypervisor product like VMware ESX server to
be closer to that provided by Xen paravirtualization.

4.5 Portability Across Guest Operating System
VMGL userspace design and its implementation in standard pro-
gramming languages makes it easy to port across operating sys-
tems. In particular, we have ported VMGL to FreeBSD release 6.1
and OpenSolaris 10 release 06/06. The source code logic remained
unmodified. All necessary changes had to do with accounting for
differences in the OS development environment, such as header in-
clusion, library linking, and tools used in the build process.

To test our VMGL port for these two operating systems, we
configured them as VMware Workstations guests running the open-
source Quake 3 port ioquake3 (Quake 3’s authors did not port
the application to OpenSolaris or FreeBSD). Figure 6 compares
the performance of Mesa software rendering and VMGL accel-
erated rendering for each OS, including Linux. While FreeBSD
did not perform in general as well as OpenSolaris, in both cases
VMGL conserves its notable performance advantage over software
rendering. Configuring our experimental machine to natively run
FreeBSD or OpenSolaris was beyond our time availability. We are
confident VMGL will show a trend similar to that with Linux and
maintain performance on par with an unvirtualized configuration.

4.6 Suspend and Resume
To measure the performance of VMGL’s suspend and resume code,
we suspended a guest running the benchmarks at five different and
arbitrary points in time. We then resumed the guest and verified
successful resumption of the OpenGL application. We measured
the size of the OpenGL state necessary to synchronize the GL stub
to the current application state, and the time it took to perform the
entire resume operation. We did not observe any noticeable effect
of the suspend and resume code on the application’s framerate per-
formance. The results of these experiments are displayed in Fig-
ure 7. This Figure displays results for both application resolutions
obtained with Xen paravirtualized guests; similar results were ob-
tained with VMware Workstation guests.

The resume time (Figure 7 (b)) is strongly dependent on the
size of the suspended OpenGL state (Figure 7 (a)), which can be as
large as 70 MB for the Enemy benchmark. Nevertheless, the latency
for reinstating the suspended OpenGL state on a new VMGL stub
never exceeded 2.5 seconds. Regardless of the suspend point, the
size of Mplayer’s state is always the same, as this state is almost
exclusively composed of the texture corresponding to the current
frame. Since the frame is twice as big on each dimension, the state
is four times larger in high resolution mode than in low resolution
mode. Finally, we were surprised to note that the size of Quake 3’s
OpenGL state is also invariant with respect to the suspend point.
We conjecture that Quake 3 preallocates the entire OpenGL state
for a new environment before allowing interaction.

We performed a second set of experiments in which we sus-
pended and resumed a guest across two different hosts: our exper-
imental machine and a similar physical host using an Intel 945G
GPU. The tests completed successfully with similar latency and

 0

 20

 40

 60

 80

 100

MplayerUnrealEnemyQuake 3

A
v
e

ra
g

e
 F

ra
m

e
s
 P

e
r

S
e

c
o

n
d

Application

N/A

Xen + Mesa
Xen + VMGL

Native

Figure 8: Benchmarks in low resolution mode.

 0

 20

 40

 60

 80

 100

MplayerUnrealEnemyQuake 3

A
v
e

ra
g

e
 F

ra
m

e
s
 P

e
r

S
e

c
o

n
d

Application

Single Core
Dual Core

Figure 9: CPU sensitivity – Xen paravirtual + VMGL, low resolution.

state size results. We had to disable in VMGL five extensions pro-
vided by the ATI card but not by Intel’s (including GL ARB occlu-
sion query, for example), and four extensions available in the In-
tel card but not in ATI’s (including GL NV texture rectangle).

4.7 Sensitivity to Screen Resolution
OpenGL drawing primitives use a normalized coordinate system,
and rely on the hardware capabilities of the graphics card to scale
the geometry to match the current screen resolution. This implies
that the higher the resolution, the busier the GPU and therefore
the less noticeable the VMGL command marshaling overhead
becomes. The slightly counter-intuitive consequence is that it is
preferable to run applications under VMGL at higher resolutions,
something which is desirable anyway.

Figure 8 shows the results from running the benchmarks at low
resolution (640x480, Mplayer runs at 640x352) for three configura-
tions: Xen with Mesa, Xen with VMGL, and native. The first three
benchmarks generate the same stream of OpenGL commands as in
the high resolution experiments (Figure 3), and rely on automatic
scaling. Mplayer is different, as each frame is generated by synthe-
sizing an appropriately sized texture from the input video data, and
therefore it does not involve any hardware scaling.

The increased pressure on the VMGL transport is evident for the
Enemy benchmark, presenting a performance drop with respect to

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

 (
F

P
S

)

Time (s)

Dual Core
Single Core

(a) Instantaneous frames per second

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

Dual Core
Single Core

(b) CPU usage

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140 160 180

B
a

n
d

w
id

th
 (

M
b

it
/s

)

Time (s)

Dual Core
Single Core

(c) Network usage

Figure 10: Unreal instantaneous FPS, and CPU and network usage
on dual- vs. single-core configurations, low resolution. CPU utilization
includes all components depicted in Figure 1. With a single-core, the
benchmark takes longer to complete due to the reduced framerate.

the unvirtualized baseline to approximately half the rate of frames
per second. However, for the remaining three benchmarks the per-
formance of Xen+VMGL closely matches that of the native con-
figuration. Software rendering is still unable to provide reasonable

 0

 20

 40

 60

 80

 100

MplayerUnrealEnemyQuake 3

A
v
e

ra
g

e
 F

ra
m

e
s
 P

e
r

S
e

c
o

n
d

Application

Xen + VMGL, concurrent
Xen + VMGL, single

Native, concurrent
Native, single

 0

 0.2

 0.4

 0.6

 0.8

 1

MplayerUnrealEnemyQuake 3

N
o

rm
a

liz
e

d
 F

ra
m

e
s
 P

e
r

S
e

c
o

n
d

Application

Xen + VMGL
Native

(a) Raw per-instance FPS (b) Normalized FPS

Figure 11: Concurrent guests – FPS for running two simultaneous instances of each benchmark at low resolution. Xen paravirtual.

performance, perhaps with the exception of the Mplayer bench-
mark achieving 17.6 average FPS due to the smaller sized frames.

For the remainder of this section, we concentrate on low-
resolution experiments as they bias the results against VMGL.

4.8 Sensitivity to Multi-Core Processing
To determine the benefits that VMGL derives from multi-core
processing, we also ran all of our application benchmarks after
disabling one of the two cores in our experimental machine. These
results, presented in Figure 9, show a performance drop for Enemy
and Unreal, the more modern applications. There is no significant
difference for the older applications.

We analyze the benefits arising from a multi-core setup using
Unreal as an example. Figure 10 shows the differences in resource
usage for the single and multi-core cases. The increased CPU uti-
lization possible with dual-core parallelism (Figure 10 (b)) results
in a higher rate of OpenGL commands pushed per second through
the VMGL transport (Figure 10 (c)). The consequence is a higher
framerate in the dual-core case (Figure 10 (a)). Unreal’s behavior
seems to be a work-conserving: rather than dropping frames at a
low framerate, it takes longer to complete the demo.

The presence of two cores leads to increased resource utiliza-
tion for a number of reasons. First, multiple cores allow concurrent
execution for the two networking stacks: in the guest where the ap-
plication executes and in the host where the viewer resides. It also
allows for parallelizing the marshaling and unmarshaling cycles of
OpenGL commands by VMGL. The availability of two cores also
ameliorates the VMM’s overhead of constantly needing to context
switch between the two VMs, and to switch to the hypervisor to
handle the interrupts generated by the bridged networking setup, a
previously documented overhead [31, 32].

4.9 Concurrent Guests
To examine VMGL’s ability to support concurrent guests, we com-
pare the performance of two instances of an application executing
concurrently in an unvirtualized configuration, to the performance
of two instances executing in two separate Xen paravirtual guests.

Figure 11 (a) presents the average per-instance FPS results for
the concurrent execution of two instances, compared to the aver-
age FPS results for a single instance (taken from Figure 8). Fig-
ure 11 (b) normalizes the concurrent execution results against the
single-instance results (i.e. Xen + VMGL, concurrent divided by
Xen + VMGL, single). The purpose of normalization is to observe

the “natural” scalability inherent to the application: simultaneous
instances may compete for CPU and memory resources. The ad-
ditional drop in normalized FPS for the VMGL configurations re-
flects the overheads of GL marshaling and context-switching VMs.

The Mplayer benchmark, more representative of a multiple vir-
tual appliance scenario, presents excellent scalability results. We
observe decreasing VMGL scalability as the application becomes
more heavyweight and places a larger demand on the GL transport:
10% additional overhead for Quake 3, 20% for Enemy, and 43%
for Unreal. Figure 10 (c) indicates that the bandwidth demands of
a single instance of Unreal can peak at almost 2 Gbit/s. Extreme
configurations with multiple high-end applications rendering con-
currently may impose an aggregate bandwidth demand on VMGL
of several Gbit/s. A VMM-specific shared memory transport may
be preferable under those circumstances.

5. Related Work
A number of solutions have been proposed to provide 3D accel-
eration to Virtual Machines. The most straightforward solution is
to grant a driver VM [30] direct access to the GPU hardware. The
driver VM would thus occupy the same role as the host in our ar-
chitecture, with the advantage of isolating potential driver malfunc-
tions on a separate protection domain. However, in the absence of
an IOMMU [13], granting hardware access rights to a VM will
weaken the safety and isolation properties of VM technology. A
rogue VM with direct hardware access would be able to initiate
DMA to and from memory owned by other VMs running on the
same machine. Further, a VM with direct hardware access can-
not be safely suspended or migrated to a different machine without
driver support.

Other proposed solutions to graphics virtualization have fo-
cused on properties other than providing VMM or guest OS in-
dependence. The Blink [25] system for the Xen hypervisor multi-
plexes graphical content onto a virtual GPU, with an emphasis on
safety in the face of multiple untrusted clients. While no details
are available regarding its implementations, VMware [48] provides
a solution that virtualizes the Direct3D API for Windows applica-
tions. Both systems are VMM-specific as they use shared memory
and do not support suspending or migrating a VM.

Accelerated Indirect GLX (AIGLX) [1], has been developed to
provide accelerated GLX rendering for remote clients. While origi-
nally designed to enable OpenGL-accelerated compositing window
managers, it could be used as an alternative transport for VMGL.

Since AIGLX lacks the transport optimizations used by WireGL,
we believe it would severely constrain applicability with its greater
bandwidth utilization.

A number of projects for remote visualization of scientific data
have tried to optimize remote OpenGL rendering. Some, like Visa-
pult [14], Cactus [23], and SciRun [35], require their applications
to be written to a particular interface and are therefore useful only
when application source code is available. Other systems [42, 46]
render data using remote GPUs and ship the resulting images using
slow or lossy thin client protocols such as X11 or VNC.

6. Future Work and Conclusion
GPUs are critical to high-quality visualization in many applica-
tion domains. Running such applications in VMM environments
is difficult for a number of reasons, all relating to the fact that
the GPU hardware interface is proprietary rather than standardized.
This paper describes the design, implementation, and evaluation of
VMGL, a VMM-independent, GPU-independent, cross-platform
solution to this problem. VMGL virtualizes the OpenGL software
interface, recognizing its widespread use in graphics-intensive ap-
plications. By virtualizing at the API level, VMGL is able to sup-
port multiple guest OSs and to provide suspend and resume capabil-
ities across GPUs from different vendors. Our experiments confirm
excellent rendering performance with VMGL, coming within 14%
or better of native hardware accelerated performance measured in
frames per second. This is two orders of magnitude better than soft-
ware rendering, which is the commonly available alternative today
for graphics-intensive applications in virtualized environments.

Our results also show that the resource demands of VMGL
align well with the emerging trend of multi-core processors. In
other words, there is natural and easy-to-exploit parallelism in
the VMGL architecture. Our work thus reveals an opportunity for
three emerging trends (virtualization, growing use of GPUs by
applications, and multi-core processing) to evolve in a mutually
supportive way.

Our work so far has focused on portability across VMMs and
guest operating systems. We have therefore avoided all perfor-
mance optimizations that might compromise portability. By care-
fully relaxing this constraint, we anticipate being able to bring
VMGL performance closer to native performance for very de-
manding applications at high levels of concurrency. Under such
workloads the total bandwidth between application VMs and the
OpenGL stubs becomes the performance bottleneck. A shared-
memory rather than network transport implementation could re-
lieve this bottleneck. By implementing this optimization in a way
that preserves the external interfaces of VMGL, we could enable
VMM-specific and guest-specific code to be introduced with min-
imal negative impact on portability. The network transport would
always remain a fallback for environments without support for
shared-memory transport.

While its main target is graphical applications, VMGL can pro-
vide access to the computing power of GPUs to an emerging class
of GPU-based scientific applications [11, 22]. The highly parallel
and efficient architecture of GPUs has proved tremendously useful
in producing high-performance solutions to several scientific prob-
lems. Algorithms that solve these problems using GPU processing
are written mainly in OpenGL [24]. We believe that scientific ap-
plication running in virtualized environments, like those proposed
for the Grid [20], will be able to leverage VMGL for improved per-
formance. We intend to test this hypothesis in future work.

Finally, while VMGL’s current implementation supports X11-
based guest operating systems, we anticipate no major obstacles
when porting VMGL to Windows and Apple’s MacOS. We also
believe that the Direct3D API can be virtualized in a similar way to
what we have presented here for OpenGL.

Acknowledgments
We thank the anonymous reviewers and fellow University of
Toronto syslab students for their helpful suggestions. We also thank
VMware for granting permission to publish benchmarking results
obtained with their VMware Workstation product. We thank Anil
Madhavapeddy and Dave Scott for mentoring during the early
stages of this project, and Jacob Gorm-Hansen for the enriching
discussions on our common interests.

Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the NSERC, CFI, OIT, NSF, Google, the
University of Toronto, or Carnegie Mellon University. All uniden-
tified trademarks mentioned in the paper are properties of their re-
spective owners.

References
[1] Rendering project/AIGLX. http://fedoraproject.org/

wiki/RenderingProject/aiglx.
[2] WineD3D. http://wiki.winehq.org/WineD3D.
[3] Mplayer Headquarters. http://www.mplayerhq.hu/.
[4] Personal communications with J. Gorm-Hansen and Y. Liu.
[5] OpenGL – The Industry Standard for High Performance

Graphics. http://www.opengl.org.
[6] Unreal Torunament 2004 Demo: Assault. http://www.

3dcenter.org/downloads/ut2004demo-assault.php.
[7] VMware Workstation. http://www.vmware.com/

products/ws/.
[8] Enemy Territory Demo: Radar. http://www.3dcenter.

org/downloads/enemy-territory-radar.php.
[9] AnandTech. Next-Generation Game Performance with the

Unreal Engine: 15-way GPU Shootout. http://www.
anandtech.com/video/showdoc.html?i=1580&p=1.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proc. 19th ACM Symposium on Operating
Systems Principles (SOSP), pages 164–177, Bolton Landing,
NY, Oct. 2003.

[11] G. Baron, C. Sarris, and E. Fiume. Fast and accurate time-
domain simulations with commodity graphics hardware. In
Proc.Antennas and Propagation Society International Sympo-
sium.

[12] F. Bellard. QEMU, a Fast and Portable Dynamic Translator.
In Proc. FREENIX track, Usenix Technical Conference, pages
47–60, Anaheim, CA, Apr. 2005.

[13] M. Ben-Yehuda, J. Mason, O. Krieger, and J. Xeni-
dis. Xen/IOMMU, Breaking IO in New and Interesting
Ways. http://www.xensource.com/files/xs0106 xen
iommu.pdf.

[14] W. Bethel. Visapult: A prototype remote and distributed
visualization application and framework. In Proc. SIGGRAPH
Annual Conference, New Orleans, LA, July 2000.

[15] I. Buck, G. Humphreys, and P. Hanrahan. Tracking
graphics state for networked rendering. In Proc. ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hard-
ware, pages 87–95, Interlaken, Switzerland, Aug. 2000.

[16] R. Caceres, C. Carter, C. Narayanaswami, and M. Raghunath.
Reincarnating PCs with Portable SoulPads. In Proc. 3rd
International Conference on Mobile Systems Applications and
Services (MobiSys), Seattle, WA, June 2005.

[17] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam.
The Collective: A Cache-Based System Management Archi-

http://fedoraproject.org/wiki/RenderingProject/aiglx
http://fedoraproject.org/wiki/RenderingProject/aiglx
http://wiki.winehq.org/WineD3D
http://www.mplayerhq.hu/
http://www.opengl.org
http://www.3dcenter.org/downloads/ut2004demo-assault.php
http://www.3dcenter.org/downloads/ut2004demo-assault.php
http://www.vmware.com/products/ws/
http://www.vmware.com/products/ws/
http://www.3dcenter.org/downloads/enemy-territory-radar.php
http://www.3dcenter.org/downloads/enemy-territory-radar.php
http://www.anandtech.com/video/showdoc.html?i=1580&p=1
http://www.anandtech.com/video/showdoc.html?i=1580&p=1
http://www.xensource.com/files/xs0106_xen_iommu.pdf
http://www.xensource.com/files/xs0106_xen_iommu.pdf

tecture. In Proc. 2nd Symposium on Networked Systems De-
sign & Implementation (NSDI), Boston, MA, 2005.

[18] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. Revirt: enabling intrusion analysis through virtual-
machine logging and replay. In Proc. 5th Symposium on Op-
erating Systems Design and Implementation (OSDI), Boston,
MA, Dec. 2002.

[19] Epic Games. Unreal Tournament. http://www.
unrealtournament.com/.

[20] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes. A case for
grid computing on virtual machines. In Proc. 23rd Interna-
tional Conference on Distributed Computing Systems (ICDCS
’03), page 550, 2003.

[21] T. Funkhouser and C. Séquin. Adaptive Display Algorithm
for Interactive Frame Rates During Visualization of Complex
Virtual Environments. In Proc. 20th Annual Conference on
Computer Graphics and Interactive Techniques, pages 247–
254, Anaheim, CA, Aug. 1993.

[22] N. Galoppo, N. Govindaraju, M. Henson, and D. Manocha.
LU-GPU: Efficient Algorithms for Solving Dense Linear Sys-
tems on Graphics Hardware. In Proc. Supercomputing, Inter-
national Conference for High Performance Computing, Net-
working, Storage and Analysis, Seattle, WA, Nov. 2005.

[23] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke,
E. Seidel, and J. Shalf. The cactus framework and toolkit:
Design and applications. In Vector and Parallel Processing
- VECPAR ’2002, 5th International Conference, Porto, Portu-
gal, June 2003. Springer.

[24] GPGPU – General Purpose Programming on
GPUs. What programming API’s exist for GPGPU.
http://www.gpgpu.org/w/index.php/FAQ#
What programming APIs exist for GPGPU.3F.

[25] J. G. Hansen. Blink: 3d display multiplexing for virtualized
applications. Technical Report 06/06, DIKU – University of
Copenhagen, Jan. 2006. http://www.diku.dk/∼jacobg/
pubs/blink-techreport.pdf.

[26] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P. D. Kirchner, and J. T. Klosowski. Chromium: a stream-
processing framework for interactive rendering on clusters. In
Proc. 29th Annual Conference on Computer Graphics and In-
teractive Techniques, pages 693–702, New York, NY, USA,
2002.

[27] ID Software. Quake III Arena. http://www.idsoftware.
com/games/quake/quake3-arena/.

[28] M. Kozuch and M. Satyanarayanan. Internet suspend/resume.
In Proc. Fourth IEEE Workshop on Mobile Computing Sys-
tems and Applications, Callicoon, New York, June 2002.

[29] H. A. Lagar-Cavilla. VMGL Site. http://www.cs.
toronto.edu/∼andreslc/vmgl.

[30] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified de-
vice driver reuse and improved system dependability via vir-
tual machines. In Proceedings of the 6th Symposium on Op-
erating Systems Design and Implementation, San Francisco,
CA, Dec. 2004.

[31] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel. Diagnosing Performance Overheads in the
Xen Virtual Machine Environment. In VEE ’05: Proc. 1st
ACM/USENIX International Conference on Virtual Execution
Environments, pages 13–23, Chicago, IL, June 2005.

[32] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing Net-
work Virtualization in Xen. In Proc. USENIX Annual Techni-
cal Conference (USENIX 2006), pages 15–28, May 2006.

[33] Microsoft. DirectX Home Page. http://www.microsoft.
com/windows/directx/default.mspx.

[34] Motherboards.org. How to benchmark a videocard.
http://www.motherboards.org/articles/guides/
1278 7.html/.

[35] S. Parker and C. Johnson. Scirun: A scientific programming
environment for computational steering. In Proc. ACM/IEEE
conference on Supercomputing, San Diego, CA, Dec. 1995.

[36] B. Paul. Mesa 3d library. http://www.mesa3d.org/.
[37] T. M. Rhyne. Computer games’ influence on scientific and

information visualization. IEEE Computer, 33(12):154–159,
Dec. 2000.

[38] Richardson, T., Stafford-Fraser, Q., Wood, K. R., and Hopper,
A. Virtual Network Computing. IEEE Internet Computing, 2
(1):33–38, Jan/Feb 1998.

[39] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum. Optimizing the migration of virtual com-
puters. In Proc. 5th Symposium on Operating Systems Design
and Implementation (OSDI), Dec. 2002.

[40] M. Satyanarayanan, M. A. Kozuch, C. J. Helfrich, and D. R.
O’Hallaron. Towards seamless mobility on pervasive hard-
ware. Pervasive and Mobile Computing, 1(2):157–189, 2005.

[41] Splash Damage. Enemy Territory Press Release. http:
//www.splashdamage.com/?page id=7.

[42] S. Stegmaier, M. Magallón, and T. Ertl. A generic solution
for hardware-accelerated remote visualization. In VISSYM
’02: Proc. Symposium on Data Visualisation 2002, pages 87–,
2002.

[43] M. Swift, M. Annamalai, B. Bershad, and H. Levy. Recov-
ering device drivers. In Proc. 6th Symposium on Operating
Systems Design and Implementation (OSDI), San Francisco,
CA, Dec. 2004.

[44] Tom’s Hardware. 3D Benchmarking – Understanding Frame
Rate Scores. http://www.tomshardware.com/2000/07/
04/3d benchmarking /index.html.

[45] UT2K4 Engine Technology. Unreal engine 2. http:
//www.unrealtechnology.com/html/technology/
ue2.shtml/.

[46] VirtualGL. http://virtualgl.sourceforge.net/.
[47] VMware. Virtual appliances and application virtualization.

http://www.vmware.com/appliances/.
[48] VMware. Experimental Support for Direct3D.

http://www.vmware.com/support/ws5/doc/
ws vidsound d3d.html.

[49] Wikipedia. Quake3 engine technology. http://en.
wikipedia.org/wiki/Quake III Arena#Technology/.

http://www.unrealtournament.com/
http://www.unrealtournament.com/
http://www.gpgpu.org/w/index.php/FAQ#What_programming_APIs_exist_for_GPGPU.3F
http://www.gpgpu.org/w/index.php/FAQ#What_programming_APIs_exist_for_GPGPU.3F
http://www.diku.dk/~jacobg/pubs/blink-techreport.pdf
http://www.diku.dk/~jacobg/pubs/blink-techreport.pdf
http://www.idsoftware.com/games/quake/quake3-arena/
http://www.idsoftware.com/games/quake/quake3-arena/
http://www.cs.toronto.edu/~andreslc/vmgl
http://www.cs.toronto.edu/~andreslc/vmgl
http://www.microsoft.com/windows/directx/default.mspx
http://www.microsoft.com/windows/directx/default.mspx
http://www.motherboards.org/articles/guides/1278_7.html/
http://www.motherboards.org/articles/guides/1278_7.html/
http://www.mesa3d.org/
http://www.splashdamage.com/?page_id=7
http://www.splashdamage.com/?page_id=7
http://www.tomshardware.com/2000/07/04/3d_benchmarking_/index.html
http://www.tomshardware.com/2000/07/04/3d_benchmarking_/index.html
http://www.unrealtechnology.com/html/technology/ue2.shtml/
http://www.unrealtechnology.com/html/technology/ue2.shtml/
http://www.unrealtechnology.com/html/technology/ue2.shtml/
http://virtualgl.sourceforge.net/
http://www.vmware.com/appliances/
http://www.vmware.com/support/ws5/doc/ws_vidsound_d3d.html
http://www.vmware.com/support/ws5/doc/ws_vidsound_d3d.html
http://en.wikipedia.org/wiki/Quake_III_Arena#Technology/
http://en.wikipedia.org/wiki/Quake_III_Arena#Technology/

	Introduction
	Background
	Hardware Acceleration
	OpenGL Primer
	X11 Hardware Acceleration

	VMGL
	VMGL Architecture
	OpenGL Transport
	Suspend and Resume Functionality
	Porting GPU Drivers For Xen
	VMGL Limitations

	Evaluation
	Benchmarks
	Experimental Setup
	Performance
	VMM Portability
	Portability Across Guest Operating System
	Suspend and Resume
	Sensitivity to Screen Resolution
	Sensitivity to Multi-Core Processing
	Concurrent Guests

	Related Work
	Future Work and Conclusion

